Regresi linear adalah alat statistik yang dipergunakan untuk mengetahui pengaruh antara satu atau beberapa variabel terhadap satu buah variabel. Variabel yang mempengaruhi sering disebut variabel bebas, variabel independen atau variabel penjelas. Variabel yang dipengaruhi sering disebut dengan variabel terikat atau variabel dependen. Regresi linear hanya dapat digunakan pada skala interval dan ratio.
Secara umum regresi linear terdiri dari dua, yaitu regresi linear sederhana yaitu dengan satu buah variabel bebas dan satu buah variabel terikat; dan regresi linear berganda dengan beberapa variabel bebas dan satu buah variabel terikat. Analisis regresi linear merupakan metode statistik yang paling jamak dipergunakan dalam penelitian-penelitian sosial, terutama penelitian ekonomi. Program komputer yang paling banyak digunakan adalah SPSS (Statistical Package For Service Solutions).
Regresi Linear Sederhana
Analisis regresi linear sederhana dipergunakan untuk mengetahui pengaruh antara satu buah variabel bebas terhadap satu buah variabel terikat. Persamaan umumnya adalah:
Y = a + b X.
Dengan Y adalah variabel terikat dan X adalah variabel bebas. Koefisien a adalah konstanta (intercept) yang merupakan titik potong antara garis regresi dengan sumbu Y pada koordinat kartesius.
Langkah penghitungan analisis regresi dengan menggunakan program SPSS adalah: Analyse --> regression --> linear. Pada jendela yang ada, klik variabel terikat lalu klik tanda panah pada kota dependent. Maka variabel tersebut akan masuk ke kotak sebagai variabel dependen. Lakukan dengan cara yang sama untuk variabel bebas (independent). Lalu klik OK dan akan muncul output SPSS.
CONTOH :
Seorang peneliti ingin mengetahui pengaruh dari tinggi badan terhadap berat badan. Untuk kebutuhan penelitian tersebut diambil sampel secara acak sebanyak 10 orang untuk diteliti. Hasil pengumpulan data diketahui data sebagai berikut :
Berdasarkan data tersebut di atas :

Hitunglah nilai a dan b untuk persamaan regersi linier sederhana
Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%)
Hitunglah nilai r dan koefisien determinasi
Bagaimana kesimpulannya.
Jawab :
Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).
Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :

Berdasarkan hasil pengolahan data tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = - 73,72041 + 0,819657 X
Untuk menguji hipotesis secara parsial digunakan Uji T, yaitu :
Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306
Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k - 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.
Untuk nilai r (korelasi) adalah sebesar 0,982 dan koefisien determinasi (r kuadrat) sebesar 0,964. Berdasarkan hasil nilai koefisien korelasi maka dapat dikatakan bahwa hubungan antara variabel independen (Tinggi Badan) dengan variabel dependen (Berat Badan) mempunyai hubungan yang kuat karena nilai r sebesar 98,2% tersebut sangat mendekati nilai 100%.
Sedangkan berdasarkan nilai r kuadrat sebesar 96,4% menggambarkan bahwa sumbangan variabel independen (Tinggi Badan) terhadap naik turunnya variabel dependen (Berat Badan) sebesar 96,4% sedangkan sisanya merupakan sumbangan dari variabel lain yang tidak dimasukkan dalam model.
Kesimpulannya : Berdasarkan hasil pengujian hipotesis, baik Uji T maupun Uji F, diketahui bahwa Variabel Tinggi Badan Seserorang berpengaruh terhadap Variabel Berat Badan Seseorang dan pengaruhnya bersifat positif (nilai koefisien regresinya sebesar 0,819657), artinya jika seseorang mempunyai tinggi badan semakin tinggi maka akan meningkatkan berat badannya (dan sebaliknya). Berdasarkan nilai koefisien regresi tersebut dapat diketahui bahwa jika tinggi badan meningkat sebesar 10% maka berat badan akan meningkat 8,2%.
Sedangkan berdasarkan nilai koefisien korelasi dan koefisien determinasi diketahui bahwa variabel independen (Tinggi Badan) mempunyai hubungan yang kuat dan mempunyai sumbangan yang cukup besar terhadap variabel dependen (Berat Badan).

Hitunglah nilai a dan b untuk persamaan regersi linier sederhana
Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%)
Hitunglah nilai r dan koefisien determinasi
Bagaimana kesimpulannya.
Jawab :
Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).
Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :

Berdasarkan hasil pengolahan data tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = - 73,72041 + 0,819657 X
Untuk menguji hipotesis secara parsial digunakan Uji T, yaitu :
Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306
Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k - 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.
Untuk nilai r (korelasi) adalah sebesar 0,982 dan koefisien determinasi (r kuadrat) sebesar 0,964. Berdasarkan hasil nilai koefisien korelasi maka dapat dikatakan bahwa hubungan antara variabel independen (Tinggi Badan) dengan variabel dependen (Berat Badan) mempunyai hubungan yang kuat karena nilai r sebesar 98,2% tersebut sangat mendekati nilai 100%.
Sedangkan berdasarkan nilai r kuadrat sebesar 96,4% menggambarkan bahwa sumbangan variabel independen (Tinggi Badan) terhadap naik turunnya variabel dependen (Berat Badan) sebesar 96,4% sedangkan sisanya merupakan sumbangan dari variabel lain yang tidak dimasukkan dalam model.
Kesimpulannya : Berdasarkan hasil pengujian hipotesis, baik Uji T maupun Uji F, diketahui bahwa Variabel Tinggi Badan Seserorang berpengaruh terhadap Variabel Berat Badan Seseorang dan pengaruhnya bersifat positif (nilai koefisien regresinya sebesar 0,819657), artinya jika seseorang mempunyai tinggi badan semakin tinggi maka akan meningkatkan berat badannya (dan sebaliknya). Berdasarkan nilai koefisien regresi tersebut dapat diketahui bahwa jika tinggi badan meningkat sebesar 10% maka berat badan akan meningkat 8,2%.
Sedangkan berdasarkan nilai koefisien korelasi dan koefisien determinasi diketahui bahwa variabel independen (Tinggi Badan) mempunyai hubungan yang kuat dan mempunyai sumbangan yang cukup besar terhadap variabel dependen (Berat Badan).
0 comments:
Post a Comment